Graphmae代码解析
本文代码源于 DGL 的 Example 的,感兴趣可以去 github 上面查看。 阅读代码的本意是加深对论文的理解,其次是看下大佬们实现算法的一些方式方法。当然,在阅读 GraphSAGE 代码时我也发现了之前忽视的 GraphSAGE 的细节问题和一些理解错误。比如说:之前忽视了 GraphSAGE 的四种聚合方式的具体实现。 进 … See more dgl 已经实现了 SAGEConv 层,所以我们可以直接导入。 有了 SAGEConv 层后,GraphSAGE 实现起来就比较简单。 和基于 GraphConv 实现 GCN 的唯一区别在于把 GraphConv 改成了 SAGEConv: 来看一下 SAGEConv … See more 这里再介绍一种基于节点邻居采样并利用 minibatch 的方法进行前向传播的实现。 这种方法适用于大图,并且能够并行计算。 首先是邻居采样(NeighborSampler),这个最好配合着 PinSAGE 的实现来看: 我们关注下上半部分, … See more WebJul 20, 2024 · 与以前的图形自编码器不同,GraphMAE通过简单的重建被遮蔽的损坏节点特征,使图自编码器超越对比学习. GraphMAE的关键设计在于以下几个方面: 基于遮蔽的节点特征重构。. 现有的图数据自编码器通常以边缘作为重构目标,但其在下游分类任务中的表现 …
Graphmae代码解析
Did you know?
WebSep 26, 2024 · 在GraphMAE中,作者提出直接对每一个掩膜的结点进行重构,重构成原始的特征,这个过程因为其多维度和特征的连续性,会是一个比较困难的任务。当代码的维数大于输入的维数时,普通的自动编码器有学习到臭名昭著的“恒等函数”的风险,是一个退化解,使学习到的潜码code无用。 WebNov 18, 2024 · GraphMAE:将MAE的方法应用到图中使图的生成式自监督学习超越了对比学习 前几天的文章中我们提到MAE在时间序列的应用,本篇文章介绍的论文已经将MAE的方法应用到图中,这是来自[KDD2024]的论文GraphMAE: Self-su...
WebJul 20, 2024 · 实验结果表明,GraphMAE在不依赖数据增强等任何技术的情况下,取得了与当前最优对比学习方法相当甚至超过的结果。 这表明生成式自监督学习仍然有很大的潜力,GraphMAE有助于我们在图生成学习方面的进一步探索。 GraphMAE是如何工作的. 使用[MASK]重构节点特征 WebGraphMAE工作展示出,生成式自监督学习在图表示学习仍然具有很大的潜力。相比于对比学习,GraphMAE不依赖数据增强等技巧,这也是生成式学习的优点。因此,generative ssl值得在未来的工作中进行更深入的探索[2][9]。更多细节可以参见论文和代码。 References
WebSep 14, 2024 · GraphMAE直接重建每个被掩盖节点的原始特征,现有的用于节点特征重建的图自编码器使用均方误差(Mean Squared Error, MSE)作为损失函数。 在论文中提到,在训练中MSE如果被最小化到接近于零是难以优化的,这可能不足以进行有意义的特征重构,所以GraphMAE使用余弦 ... WebMay 22, 2024 · The results manifest that GraphMAE-a simple graph autoencoder with careful designs-can consistently generate outperformance over both contrastive and …
WebSep 16, 2024 · GraphMAE 的目标是在给定部分观察到的节点信号 \mathcal{X} 和输入邻接矩阵 的情况下重建 \mathcal{V} 中节点的掩码特征。 「Q3:具有重新掩码解码的 GNN 解码器」 为了进一步鼓励编码器学习压缩表示,本文提出了一种re-mask decoding 技术来处理潜在代码 进行解码。
Web首先,要在图上进行链接预测任务,我们需要构建我们自己的逻辑图,这里采用dgl的图深度学习框架构建。我们要知道:在dgl框架中,构建图是以边的集合来进行图的定义的。# … fnbo 204thWeb阅读时不需要太在意实现细节 (比如 k 与 t 的关系), 因为了解原理之后可以很轻松写出来. 首先该函数传入: inputs: 大小为 [B,] 的 Tensor, 表示目标节点的 ID;; layer_infos: 假设 Graph … fnbo 0% business credit cardWeb在上一篇文章中介绍了GCN 浅梦:【Graph Neural Network】GCN: 算法原理,实现和应用GCN是一种在图中结合拓扑结构和顶点属性信息学习顶点的embedding表示的方法。然而GCN要求在一个确定的图中去学习顶点的embedd… green technology centre peterboroughWebDec 29, 2024 · 作者提出了一个掩码图自动编码器GraphMAE,它缓解了生成性自监督图学习的这些问题。. 作者建议将重点放在特征重建上而不是结构重建上,同时使用掩码策略和缩放余弦误差,这有利于GraphMAE的鲁棒性训练。. 作者针对三种不同的图学习任务,在21个公 … fnbo 1800 numberWebNov 23, 2024 · GraphMAE:将MAE的方法应用到图中使图的生成式自监督学习超越了对比学习 前几天的文章中我们提到MAE在时间序列的应用,本篇文章介绍的论文已经将MAE的方法应用到图中,这是来自[KDD2024]的论文GraphMAE: Self-su... green technology adalahWebMay 22, 2024 · The results manifest that GraphMAE–a simple graph autoencoder with our careful designs–can consistently generate outperformance over both contrastive and generative state-of-the-art baselines. This study provides an understanding of graph autoencoders and demonstrates the potential of generative self-supervised learning on … fnbo 159thWebDec 14, 2024 · Implementation for KDD'22 paper: GraphMAE: Self-Supervised Masked Graph Autoencoders. We also have a Chinese blog about GraphMAE on Zhihu (知乎), … fnbo 168th and maple